Skip to main content

Climate tipping points — too risky to bet against

Politicians, economists and even some natural scientists have tended to assume that tipping points1 in the Earth system — such as the loss of the Amazon rainforest or the West Antarctic ice sheet — are of low probability and little understood. Yet evidence is mounting that these events could be more likely than was thought, have high impacts and are interconnected across different biophysical systems, potentially committing the world to long-term irreversible changes.

Integrating climate adaptation and biodiversity conservation in the global ocean

The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process.

Navigating transformation of biodiversity and climate

This planet is the home of life, born into existence and transformed over 3.8 billion years into a continuous tapestry, covering all possible places from the deep ocean floors to mountain summits. Ours is a bioclimatic world in which every organism, from bacterium to blue whale, inseparably contributes to the climate and surface conditions of Earth. This tapestry, of which we are a part, is unraveling, with its delicate patterns and motifs denigrated to near invisibility, disappearing at a rate and magnitude that rivals that of the great mass extinction events of the past (2, 3).

'The Future is Now: Science for Sustainable Development' - Global Sustainable Development Report 2019

Despite considerable efforts these past four years, we are not on track to achieve the Sustainable Development Goals by 2030. We must dramatically step up the pace of implementation as we enter a decisive decade for people and the planet. We must connect the dots across all that we do – as individuals, civic groups, corporations, municipalities and Member States of the United Nations – and truly embrace the principles of inclusion and sustainability. Science is our great ally in the efforts to achieve the Goals.

Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services.

Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies?

Rapid anthropogenic climate change is a major threat to ocean biodiversity, increasing the challenge for marine conservation. Strategic conservation planning, and more recently marine spatial planning (MSP) are among the most promising management tools to operationalize and enforce marine conservation. As yet, climate change is seldom incorporated into these plans, potentially curtailing the effectiveness of designated conservation areas under novel environmental conditions.

A framework for understanding climate change impacts on coral reef social–ecological systems

Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment.

Climate change and the future for coral reef fishes

Climate change will impact coral-reef fishes through effects on individual performance, trophic linkages, recruitment dynamics, population connectivity and other ecosystem processes. The most immediate impacts will be a loss of diversity and changes to fish community composition as a result of coral bleaching. Coral-dependent fishes suffer the most rapid population declines as coral is lost; however, many other species will exhibit long-term declines due to loss of settlement habitat and erosion of habitat structural complexity.

Global modeling of nature’s contributions to people

The magnitude and pace of global change demand rapid assessment of nature and its contributions to people. We present a fine-scale global modeling of current status and future scenarios for several contributions: water quality regulation, coastal risk reduction, and crop pollination. We find that where people’s needs for nature are now greatest, nature’s ability to meet those needs is declining. Up to 5 billion people face higher water pollution and insufficient pollination for nutrition under future scenarios of land use and climate change, particularly in Africa and South Asia.

Variable effects of local management on coral defenses against a thermally regulated bleaching pathogen

Bleaching and disease are decimating coral reefs especially when warming promotes bleaching pathogens, such as Vibrio coralliilyticus. We demonstrate that sterilized washes from three common corals suppress V. coralliilyticus but that this defense is compromised when assays are run at higher temperatures. For a coral within the ecologically critical genus Acropora, inhibition was 75 to 154% greater among colonies from coral-dominated marine protected areas versus adjacent fished areas that were macroalgae-dominated.